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1. Introduction 

In meteorology, microscale phenomena exhibit spatial scales from a few meters to hundreds of 

meters and temporal scales from minutes to several tens of minutes. Microscale processes 

directly impact many Army applications—environmental stress factors for Soldiers’ operation; 

atmospheric transport and diffusion; electro-optical (EO) propagation; and operations involving 

manned and unmanned aircraft. This project seeks to fill an operational gap in weather 

forecasting by developing a numerical model uniquely suited for forecasting in the microscale, 

an important setting for the Army. This report details the initial results of what is a long and 

significant development process.  

Currently, there is no microscale community meteorological model available. With the objective 

of accurate and timely atmospheric prediction for the battlefield and military installations, we 

have considered some alternatives to address this problem. One alternative is to run a mesoscale 

model with microscale temporal and spatial resolution. However, state-of-the-art numerical 

weather prediction (NWP) models are designed to resolve the mesoscale (from one to tens of km 

and one to several hours) up to regional scale. Mesocale NWP models deal with larger weather 

features and systems such as fronts, strong storms, and precipitation. Those mesoscale models 

cannot simulate fine-scale wind circulations and other environmental factors due to their neglect 

of fine-scale topography such as small hills, buildings, and forests in the atmospheric boundary 

layer (ABL). The physical parameterizations for microscale atmospheric motion are also 

different from those used in mesoscale models (Wyngaard, 2004; Muschinsky et al., 2004).  

Moreover, as NWP models move to finer resolution grids, the terrain-following coordinate in the 

mesoscale models becomes problematic. The vertical coordinate used by most mesoscale models 

is not designed to handle the sharp variations of the resolved surface features. On the other hand, 

currently available high-resolution, computation fluid dynamics (CFD) models are mostly 

developed for specific industrial usages, and therefore, lack important atmospheric processes 

such as turbulent transport between soil, urban, vegetation, and/or surface water and the 

atmosphere and radiation. We seek to fill a gap in Army capabilities by developing a prognostic, 

physics-based, microscale model optimized for use in the ABL. Furthermore, we hope to 

transition the Atmospheric Boundary Layer Environment (ABLE) model to a real-time 

prediction tool as future computers become more powerful.  

In last several years, we have developed a three-dimensional wind field model (3DWF) for 

application over complex terrain and in urban settings (Wang et al. 2005; Wang et al. 2010; 

Hanna et al. 2011). Although a diagnostic type model such as 3DWF is reasonably accurate for 

strong and neutral wind conditions and consumes very little computing power, it does not model 

other needed atmospheric variables (i.e., temperature, moisture, and radiation) and has intrinsic 

shortcomings in dealing with convective and stable conditions. For these reasons, we have 
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initiated a new project in FY2012 to develop a next generation microscale meteorological model, 

the ABLE model, to meet the Army application requirements for characterizing the microscale 

motion of the atmospheric boundary layer. The ABLE model is planned to be an advanced 

microscale meteorological model that couples the multiple atmospheric environmental variables 

such as wind, temperature, moisture, and scalars or pollutant transports. The model is based on a 

set of three-dimensional, prognostic, incompressible, Navier-Stocks equations with special 

attention given to the microscale variation of atmospheric variables caused by complex 

boundaries such as buildings, forest canopies, and complex terrain. The model will take 

advantage of recent developments in the treatment of boundary conditions, computational grid 

generation, numerical solvers, and turbulence modeling. This model will be a large leap forward 

in our capability to model the microscale ABL variables and their interactions. 

2. Governing Equations 

2.1 Mean Atmospheric Variables 

The proposed new microscale model will focus on the flows in the ABL. There are several 

special considerations for a microscale meteorological model. The framework for the ABLE 

model is based on the following conservation equations for the meteorological variables, 

including wind, temperature, pressure, scalars such as moisture or pollutant concentrations, and 

energy transfer between the Earth’s surface and the atmosphere. We use a set of incompressible 

Navier-Stocks system equations with the Boussinesq approximation to eliminate sound waves 

that have no meteorological significance. The advantage of not resolving sound waves is that the 

model time marching scheme will allow a much larger time step according to the Courant–

Friedrichs–Lewy (CFL) criteria. The Coriolis force is rationally neglected because the domain 

that this model intends to cover is very small and the Coriolis force is several orders of 

magnitude smaller than other forces. The choice of this equation set is justified because we are 

modeling very fine-scale atmospheric motions in the ABL where deep moist convection is not 

present (Stull 1989; Durran 2008).  The first stage in the development is focused on the Reynolds 

Averaged Navier-Stocks (RANS) type model, and the second stage of the development is 

extended to the Large Eddy Simulation (LES) type of model. In derivation of the following 

model equations, two operations were performed for the meteorological variables. The first step 

is to represent the variables of pressure, temperature, and density as the sum of their base states 

and deviations. The density deviation from inertial terms are all neglected except in the gravity 

terms, and the ratio of density deviation to the base density is then replaced with the ratio of 

potential temperature deviation to the base state potential temperature in the gravity term (i.e., 

Boussinesq approximation). The second step separates the velocity, potential temperature, and 

the scalar variables into the two parts, the mean and the turbulent, by ensemble averaging (for 

RANS) or spatial filtering (for LES). The detailed derivations of the model equation set can be 
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found in reference books (Stull 1989; Wyngaard 2010). The following is the RANS equation set 

that is written in conservative tensor form in the Cartesian coordinate: 
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where iU and jU  are the ensemble averages of wind velocity components; prime terms are the 

turbulent fluctuations of the variables; over-bar terms are the turbulent flux or Reynolds stress 

terms;  and 0 are the base references of air density and potential temperature; C is the mean 

scalar  mass mixing ratio and the scalar that can be moisture or other gases; and P  and  are the 

pressure and potential temperature deviations from the base state. The averaged turbulent flux 

terms of momentum, heat, and scalar parameters are represented by the over bar of primed terms. 

Tg, Rn, E, H, Hm are the ground surface temperature, net radiation flux, evaporation, sensible 

heat, and molecular heat conduction between the atmosphere and the ground surface, 

respectively;  c  ,, are the dynamic molecular viscosity, diffusivity of heat, and diffusivity of 

scalar parameters, respectively; SLCC vgp ,,, are the specific heat of air at constant pressure, the 

heat capacity of the Earth surface materials, the latent heat of evaporation, and source strength 

term for scalar parameters, respectively; and 3i is the Kronecker delta for tensor notation. The 

conservation of mass, momentum, energy, scalar parameters, and radiation flux are governed by 

the equations 1–5, respectively, in tensor differential form. Note that absolute pressure is of no 

significance, only the pressure gradient affects the flow in the incompressible flow. The pressure 

field is governed by a Poisson equation, which can be derived by using the pressure-velocity 

coupling to satisfy the continuity equation. 

2.2 Turbulence Closure Models 

There are many turbulence closure models that have been developed for different flows. In this 

section, we only introduce the standard k- model and the LES model. This subject will be 

described in detail once we complete the implementation of a turbulent parameterization in the 

ABLE model. 
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2.2.1 k-  model 

In the RANS-type turbulence model, the turbulent fluxes result from partitioning total velocity 

variables into fluctuation and mean parts via either time or ensemble averages. The turbulent 

fluxes are computed using the turbulent viscosity, which is analogous to molecular viscosity in 

the laminar flow. In the k-  model (Launder and Spalding 1974), the turbulent viscosity (Km) is 

determined by the turbulent kinetic energy (k = 2/iiuu  ) and dissipation rate ( ) by 
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where C  is an empirical coefficient. The turbulent viscosities for heat and scalar, hK , and cK , 

are related to the mK  via the effective Prandtl number (Pr = hm KK / = 0.7) and Schmidt  number 

(Sc = cm KK / = 0.9). The turbulent kinetic energy (k) and turbulent dissipation rate ( ) are 

computed using the following prognostic equations:  
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where the numerical values of closure coefficients are taken as follows: 

 ,44.11 C  ,92.12 C  09.0C , ,0.1k  3.1  

Launder and Spalding (1974) were the first ones that constructed a numerical model and used 

above closure coefficients. Detail derivation of above k and equations can be found in Wilcox 

(2006). The physical interpretations of the terms in the turbulent kinetic energy (TKE) equation 7 

are as follows. The terms on the left hand are the tendency and advection of TKE by mean flow. 

The first and last terms on the right-hand side represent the shear and buoyancy production of the 

TKE, and the third term represents the transport of TKE due to molecular diffusion and 

turbulence.  

The turbulent fluxes terms in the governing equations 2–4 are parameterized with the resolvable 

mean variables using the Boussinesq’s turbulent viscosity approach: 
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where k is the turbulent kinetic energy.  mK , hK , and cK are the turbulent (eddy) viscosities of 

momentum, heat, and scalar, respectively.  

2.2.2 Large Eddy Simulation 

In a LES model, the variables are partitioned into a grid resolvable part and a spatial filtered 

fluctuation part. The LES is a modeling technique to resolve the large, energy containing 

turbulent eddies and the subgrid turbulent fluxes are parameterized using either an eddy viscosity 

model or a dynamical model (Smagorinsky 1963; Germano et al. 1990). The model grids have to 

be smaller than the large eddies to resolve them. Since the scales of the large eddies in many 

ABL flows are quite small, the computation grids are much finer than RANS-type modeling. The 

LES requires much more computational power compared with the RANS. We defer description 

of the LES modeling to the future in the ABLE model development processes. Detail discussion 

about LES can be found in Pope (2000) and Wyngaard (2010). 

3. Numerical Methods for the Model 

3.1 The Structured, Collocated Computational Grid  

A box (hexahedron) shaped, structured computational grid is employed in the ABLE model. The 

rationale to choose the structured box-type grid is that generation of this type of grid is much 

simpler than generating the unstructured body-fitted grid. With recent research and development 

of immersed boundary (IB) methods (Mittal and Iaccarino 2005; Tseng and Ferziger 2003), the 

complex boundary can be treated with the box-type structured grid, which significantly reduces 

computation time and complexity. The body-fitted computational grid generation is a laborious 

process often taking several days for a complex terrain (e.g., small urban setting), but the box-

type structured grid would generated within a minute for the same computational domain. There 

are other incentives for using the box-type structured grid in the computation, including (1) less 

computational time required for one iteration on the structured grid in comparison with the 

unstructured grid; and (2) the stability of the numerical algorithm on the structured grid being 

essentially higher than on the unstructured grid (Tseng and Ferziger 2003).   

A finite volume (FV) method is used to discretize the model equations. The FV has an advantage 

over finite difference methods for satisfying mass conservation automatically without special 

treatments. In this model, the FV sizes are variable to accommodate the resolution requirement in 

different situations. For an example, much denser grids might be needed to deal with the large 

gradient of environmental variables to achieve the desired accuracy near the ground surfaces or 

buildings. Figure 1 shows an arbitrary control volume used to derive the discretized numerical 
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equations for the model. The center of this FV is denoted by the point P, and the uppercase 

letters, E,W,N,S,T, and B represent the neighboring FVs’ centers at east, west, north, south, top, 

and bottom, respectively. The lowercase letters, e,w,n,s,t, and b represent the locations that are 

half-distance points from the P to neighboring FVs’ centers. The ABLE model also uses a 

collocated grid for different environmental variables, i.e., all the variables are solved in the same 

location denoted as P for a control volume. The collocated grid offers various advantages 

compared with the traditional staggered grid arrangement. This collocated grid setup saves 

computational time and memory by using the same geometric parameters for the different 

variables. The collocated grid allows for a single set of common grid geometric parameters 

reducing computational and memory requirements. It also offers great deal of convenience in 

boundary treatment for different variables since all variables coincide with the boundary of 

physical boundaries of the solution domain. The property of the collocated grid offers a great 

deal of simplicity in treatment of boundary when the IB method is used. The collocated grid 

requires a special interpolation scheme (Rhie and Chow 1983) to prevent the oscillating velocity 

and pressure fields, which is described later.  

 

Figure 1.  A finite volume stencil for ABLE model. The symbol P is the  

center point that the FV represents, and E, W, S, N, T, B 

represent the centers of the neighboring FVs. The lowercase 

letters e, w, s, n, t, b represent the center points on the each faces 

of the FV P. The geometric length of the FV (ΔX, ΔY ΔZ)  

can be variable for non-uniform structured computational grid. 
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3.2 Numerical Method for Scalar Transport Equation 

The scalar transport equation is used to demonstrate the numerical discretization without losing 

the generality for other governing equations, since the momentum and heat transport equations 

are very similar to scalar transport except the pressure and source terms. The treatment of the 

pressure gradient force in the momentum equation is described separately. Following Patankar 

(1980), the scalar transport equation, including the turbulence transport parameterization, can be 

written in following form:  
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where U, V, W are three Cartesian components of the wind velocity and S is the source strength 

term for the scalar. Using an implicit time differencing scheme, the integration of this equation 

over a box-shaped control volume (figure 1) gives  
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where superscript m denote the values from last outer iteration (time marching), zyx  ,, are 

the finite control volume side lengths in the x, y, and z directions, which are prescribed at 

different spatial locations for a non-uniform grid configuration.  Mass fluxes facescv _  through 
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These terms incorporate both the advection and diffusive fluxes through the each of the control 

volume’s faces. Note that the mass flux ρU uses the U values from last outer iteration m. The 

mass mixing ratio of scalar, C, is at the time step m+1 since the implicit scheme is applied to 

allow the large time steps without numerical instability problem. The superscript of the time step 

m+1 is abbreviated for clarity in the derivation. The continuity equation is satisfied in the scalar 

transport equation. The advection air mass fluxes, Fi, are determined by the upstream mass 

fluxes (i.e., zyUF m

ee   ) using the velocity values from last outer iteration, named as 

upstream difference scheme (UDS). The upwind mass flux for scalar is denoted in Q
UDS

: 

 )0,min()0,max()0,max()0,max()( eEePeEePe

UDS

e FCFCFCFCzyUCQ    

 )0,min()0,max()0,max()0,max()( wPwWwPwWw

UDS

w FCFCFCFCzyUCQ    

 )0,min()0,max()0,max()0,max()( nNnPnNnPn

UDS

n FCFCFCFCzxVCQ    

 )0,min()0,max()0,max()0,max()( sPsSsPsSs

UDS

s FCFCFCFCzxVCQ    

 )0,min()0,max()0,max()0,max()( tTtPtTtPt

UDS

t FCFCFCFCyxWCQ    

 )0,min()0,max()0,max()0,max()( bPbBbPbBb

UDS

b FCFCFCFCyxWCQ    (15) 

To achieve second-order accuracy, we use the deferred correction approach (Khosla and Rubin, 

1974, Ferziger and Peric, 2002) to compute the advective mass flux for scalar, which includes 

the central difference scheme (CDS).  For the mass flux through the face e of CV, 

 mUDS

e

CDS

e

UDS

ee QQQQ )(  . (16) 

The superscript m again means that computation of those fluxes using the last outer iteration 

solved value. The outcome of the outer iteration is that UDS contribution is canceled out, leaving 

a CDS solution which is the second-order accuracy. The CDS computation of scalar mass flux is 

defined as 

 )1( ePeE

CDS

e rQrQQ   (17) 

where )/()( PEPee xxxxr  ,  zyCUQ EEE   , and the lowercase subscripts represents the 

advective fluxes at the corresponding faces of  control volume and the uppercase subscript of C 

denote the concentration values at the control volume centers. The concentration gradients in 

each direction are discretized in following central differentials for the computation of diffusive 

fluxes: 
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Here we only show we   flux in x direction, the fluxes in other two (y and z) directions are 

similar. Let )( cc KD    be the total diffusion coefficient for a scalar, then 
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Adding the diffusive and advective fluxes in y and z directions and after some simple algebra 

manipulations, the discretized scalar transport equation can be written as following liner system 

equations: 

 QbCaCaCaCaCaCaCa BBTTSSNNWWEEPP  , (20) 

where 
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At this point, the continuity equation 1 can be written in similar finite volume form: 

 0e w N S T BF F F F F F       (21) 

Therefore, combining the equations 20 and 21, we have  

 BTSNWE

t

Pp aaaaaaaa   (22) 

In equation 20, Q=Qe+Qw+Qn+Qs+Qt+Qb is the sum of  source terms of advection in each 

direction due to the deferred correction when using old wind speed values from the last iteration 

(t). (The diffusion source term is neglected.) For example, the deferred flux at e of CV is 

expressed as 

 mCDS

e

UDS

ee QQQ ])()[(   (23) 

Deferred mass fluxes at other faces of the CV can be computed in the same way.  

3.3 Numerical Method for Momentum Transport Equations 

Comparing equation 2 with the scalar transport equation 4, besides the terms of change of 

momentum with time, advection and diffusion in both equations, there are two more terms—the 

pressure gradient and the gravity in the momentum equations. The momentum equations 2 differ 

from passive scalar transport equation 4 in two important ways: the momentum equation is 

nonlinear in advection terms and coupled between all the velocity components so that the 

equation must be solved iteratively; and the pressure gradient forces require solving the pressure 

field. The discretization for the advection and the diffusion terms are the same as for the scalar 

transport. The pressure gradient and gravity terms need special treatment. The discretized 

algebraic equation for equation 2 is similar to the scalar transport equation except the extra 

pressure and buoyancy terms. The velocity components from last outer iteration are also used to 

determine the convective and diffusive mass fluxes. Without repeating much of the derivation for 

the scalar equation, the discretized momentum equations can be written as follows for U, V, and 

W components: 

 SUzyx
x

P
UaUa nb

U

nbP

U

P 





*
**  

 SVzyx
y

P
VaVa nb

V

nbP

V

P 





*
**  
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 SWzyx
z

P
WaWa nb

W

nbP

W

P 





*
**  (24) 

Note that in above algebraic equation, we used superscript ‘*’ for U, V, W, and P. This notation 

is used for the convenience of the description of the pressure-velocity coupling in the iteration 

algorithm discussed in the next section. The nb represents all the six neighbor points, E, W, N, S, 

T, B (figure 1) surrounding to the point P. The SU, SV, SW are source terms. Since we use the 

collocated grids, the pressure term need to be interpolated to the location of the control volume 

faces as denoted in the above equation. Recall that only the deviations of the pressure from the 

base state contribute to the momentum transport, as stated in basic equation section. The 

computation for those coefficients is the same as in the discretized scalar equation. The last terms 

on the above equations are the source terms including the buoyancy, turbulent diffusion, and 

deferred correction in the inner iteration. 

3.3.1 Pressure-velocity Coupling in the Outer Iteration  

In the incompressible equation set, there is no independent equation for pressure 

(thermodynamic pressure is undefined). Instead, the pressure gradient forcing is calculated by 

taking the divergence of the momentum equation 2, using the incompressible continuity equation 

1, and assuming the constant density and viscosity to produce the following Poisson equation for 

pressure: 
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 (25) 

Note that the absolute pressure value is not needed; only the gradient of the pressure is important 

in incompressible flow. The pressure deviation contributes to the pressure gradient force. The 

pressure and velocity are not solved simultaneously; rather, they are solved by an iterative 

process.  In the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) iteration 

(Patankar, 1980), pressure and velocity are corrected by adding the correction parts (denoted by 

superscript ′) for the variables solved in last outer iteration (denoted by superscript *), i.e., 
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 (26) 

The corrected velocities can be similarly expressed as equation 24:  
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Subtracting the equations 24 from equations 27, an equation set for correction terms is derived: 
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The SIMPLE procedure estimates the above equations by omitting 
nb

U

nb Ua ,  
nb

V

nb Va , and 

 
nb

W

nb Wa terms. Since this is an iteration procedure, it is a valid approximation. The detailed 

discussion can be found in Patankar (1980) and Tu et al. (2008).  Substituting the equations 28 

without those ∑ terms, the simplified equation can be written as 
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where ,/ U

P

U azyxB   ,/ V

P

V azyxB   W

P

W azyxB / .  By summing up the three 

equations in equation 29, taking the divergence of the resulted summation, and using the 

continuity equation, the equation for P′ is derived: 
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 (30) 

This Poisson equation can be discretized in similar way as done for the scalar and momentum 

equation.  

One thing that needs to be stressed here is the treatment of pressure and velocity coupling on the 

collocated grid. The Rhine and Chow (1983) velocity interpolation is used for the wind 

components at the CV faces to eliminate spurious pressure and velocity oscillations from the 

collocated grid. In contrast to the simple interpolation of velocity components only, the Rhine 
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Chow velocity interpolates both the velocity components and the pressure gradient for their CV 

face values, and adds a higher order correction term for CV face velocity interpolation. This is 

equivalent to adding a pressure smoothing term that is proportional to the third derivative of the 

pressure to prevent from occurrence of spurious pressure mode. This interpolation can be 

expressed as follows for a one-dimensional example: 
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 (31) 

The SIMPLE algorithm is summarized in figure 2.  The initial step begins by guessing a pressure 

P
*
, the velocity components, U

*
, V

*
, W

*
 can be solved using equation 24. The pressure (P’) field 

then can be solved via Poisson equation, equation 30.  At the next step, the pressure and velocity 

are corrected using equation 26. At this point, by using the corrected velocity components and 

pressure, the temperature, other scalar variables, and turbulence transport equations can be 

solved using the velocity and pressure values from the last step. The last step is to check the 

convergence. If the convergence is not achieved, replace the U
*
, V

*
, W,

*
 P

*
 with the newly 

solved U, V, W, P, and go through another outer iteration.   
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Figure 2.  A block diagram for the SIMPLE algorithm. 

3.4 Method for Solving the Discretized Algebraic System Equations 

After FV discretization, each of the governing equations of wind components, energy, and 

scalars becomes a set of linear system equations, whose coefficient is a sparse, seven-diagonal 

matrix. There are several methods to solve this type of system of algebraic equations, the 

successive over relaxation (SOR) method; the alternate-direction implicit (ADI) method; the 

strongly implicit procedure (SIP) (Stone, 1968; Leister and Peric, 1994); and the bi-conjugate 

gradient stabilized (BI-CGSTAB) (Van den Vorst, 1992).  Since most computation is in this 

matrix solver, we will continually evaluate solution methods for the ABLE model based on 

speed, accuracy, and numerical stability; some experimentation will be required during model 

development. Terrain, building, and morphology conditions may also alter the performance of 
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the solvers. For example, a technique might perform better in urban but not mountainous 

complex terrain. We intend to perform sensitivity tests for these numerical solvers and provide 

guidance to the user for which options to use when setting up a model run. For the prototype, we 

choose the SIP method for testing the framework. The SIP method creates an easily factorable 

matrix operator for iteration. The rate of convergence is increased by adding a contribution based 

on a smoothness assumption in the dependent variable.  

4. Boundary Conditions 

The boundary conditions discussed in this section are applied only for the mean conservation 

equations of momentum, energy, and scalar. The discussion of boundary conditions for turbulent 

fluxes and TKE equation will be postponed until future development. We also planned to 

develop an IB method for the ABLE model. The description of IB method will also be deferred 

to later because it is a large research and development problem.  

4.1 Inflow Boundary 

The inflow properties must be prescribed at the inflow boundary. The wind components U, V, W, 

and potential temperature can interpolated either from the observational data or from a larger-

scale model (e.g., mesoscale numerical prediction model) results. For an unsteady problem, a 

new inflow velocity value is prescribed at each time step. In the case of fully turbulent flow, a 

logarithmic wind profile is imposed at the surface layer. For example, in idealized, plane-parallel 

flow from the west boundary, the U wind profile will be logarithmic while V and W are set to 

zero. 

Since the inflow velocity boundary is prescribed, it should be kept constant during the outer or 

inner iteration for a steady solution. The pressure correction P
’
 is kept as zero due to the constant 

inflow velocity in the steady flow at the boundary.  

4.2 Outflow Boundary 

At an outflow boundary, the zero gradient boundary conditions are set for every variable. For an 

unsteady flow, the flow variables are also extrapolated according to the zero gradient condition 

at the outflow boundary.   

4.3 Wall Boundary 

4.3.1 Wind and Pressure 

For momentum equations, a non-slip boundary Dirichlet condition is applied at the walls by 

setting all velocity components to zero.  Besides the non-slip boundary condition, there is 

another Neumann boundary condition that needs to be applied for the diffusive fluxes terms at 

the walls (figure 3). 
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Figure 3.  A schematic diagram for the wall boundary. 

For a wall boundary, taking a bottom wall as an example,  
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The diffusive flux at the bottom wall is then expressed as 
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For this model discretization, we applied collocated the computation grid. All CVs extend to the 

boundary and boundary pressure is needed to calculate the pressure forces in the momentum 

equations. A linear extrapolation is applied to obtain the pressure at the boundaries.  

4.3.2 Temperature, Thermal Flux from Ground 

These boundary conditions will be discussed in future development of the ABLE model.  

4.4 Symmetry Plane (Free-slip) 

For a symmetry plane or top the computational domain, a symmetry plane can be used to 

eliminate momentum transport to outside of the domain. In this type of boundary condition, the 

normal velocity to the symmetry line or plane is zero. Figure 4 is an example of horizontal at top 

of the boundary layer in three dimensions. 

 

Figure 4.  A schematic diagram for top symmetry boundary. 
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The diffusive flux at the horizontal symmetry plane is computed as 
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The boundary conditions are applied for momentum equations in such a way that the flux 

coefficients for the CV at the boundary are added for the planes of boundary finite volumes. 

4.5 Immersed Boundary Conditions 

Recently, there has been significant advancement in IB methods. The IB method (Tseng and 

Ferziger, 2003; Mittal and Iaccarino 2005; Lundquist et al. 2007) has been recognized as one of 

the most accurate and efficient methods for complex geometry in geophysical flows. The IB 

method specifies a boundary value in such a way as to simulate the presence of a body surface in 

a cell without altering the structured computation grid so arbitrary shapes can be handled. This 

method combined with the structured box type grid will significantly reduce the difficulty in grid 

generation for very complex lower boundary surface. Because this is a topic that has to be 

studied and formulated for the ABLE model, we defer the detailed description to the future once 

we have finished and tested implementation of the method. 

5. Preliminary Results 

It is a good practice in the model development process to test the model with some well-known 

laboratory results or analytical solution. We have done some preliminary tests and compared 

them with the laboratory results. The first case is a 2-D simulation of the flow past an infinitely 

long cylinder, in which the well-known lee side vortices are generated. The second case is a 3-D 

lid-driven cavity flow. Extensive laboratory results are available from the literature for both 

cases.  

5.1 Flow Past a Infinite Long Cylinder 

A 2-D test simulation of steady flow past a cylinder is performed. The flow is dependent upon 

the Reynolds number, /DURe  , where D is the diameter of the cylinder, U is the upstream 

fluid velocity, and  is the dynamic viscosity.  There are many flow laboratory tests and a 

visualization database is available. At 5eR , the flow is a creeping or Stokes flow, in which 

there is no lee side vortex. At a medium Reynolds number around ( 50eR ), two symmetrical 

standing vortices are formed at the lee side. At a higher Reynolds number, these vortices are 

stretched and wavy behavior is observed. At an even higher Reynolds number ( 100eR ), an 
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alternating vortex shedding from the cylinder at the lee side, called a Von Karman vortex street, 

is observed.  

Preliminary tests for ABLE were performed for Re=40 and Re=100. The simulations were 

performed in a domain (length x width = 40D x 20D) large enough to eliminate the outer 

boundary effect on the wake formation. The total grid number is 200 x 100. Figure 5 shows the 

flow at Re=40, and Re=100, compared with the images from the album of fluid motion by Van 

Dyke (1982).  Note that the Reynolds number are not exactly the same as in our simulation, but 

the Re are close enough, i.e., within the same regimes of the flow pattern. The results also 

compared well with the numerical simulation of Tseng and Ferziger (2003). 

(a) ABLE model                 Re=40                                (b) Van Dyke (1982)              Re=30.2  

  
 

   (c) ABLE model                  Re=100                             (d) Van Dyke (1982)               Re=140 

 

Figure 5.  A comparison of the ABLE solution with the laboratory visualization (Adopted from Van Dyke 1982) at 

different Reynolds numbers. 

5.2 Three-dimensional Lid-driven Cavity Flow 

This test case is specifically for the 3-D framework of the ABLE model. In this case, a cubic 

cavity is filled with a fluid and the top cover of the cavity is moved at a steady speed to specify a 

Reynolds number.  Several laboratory test data sets are available with different Reynolds 

numbers. We use the test results by Parasad and Kosseff (1988) for comparison.   

In this simulation, the computational grid is a uniform grid with 100 x 100 x 100 grid points. The 

Re=3200 was set for the comparison with the laboratory results. For this simple lid-driven cavity 

flow, the flow showed complex patterns. This result is the steady-state solution for the flow. The 

results at the different cross sections are shown in figure 6. The ABLE model simulated U and W 
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components at the center plane at y=1/2W show good agreement with the laboratory test results 

of Parasad and Kosseff (1989). 

 

Figure 6.  ABLE model simulation of a lid-driven cavity flow. The cross sections denoted from the color-

coded planes. The results were compared with the laboratory test data from Prasad and Kosseff 

(1989). 

We have also compared ABLE model results with other numerical simulations. Figure 7 is a plot 

of symmetry plane (Z-Y) at X=0.75 for VW components from simulations of Zang et al. (1994) 

and the ABLE model. Taylor-Göertler-like vortices are evident near the Z=0.15. These types of 

vortices are also observed in the laboratory test (Prasad and Kosseff, 1989). The flow in cubic 

lid-driven cavity is symmetric at the XY and YZ planes due the boundaries and forces in this 

flow. This property is also a good check for model code correctness. The results in figures 6 and 

7 show this symmetric property. 
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(Adopted from Zang et al. 1994)                          VW components of the flow (m/s) 

                                                                                                               

Figure 7.  ABLE simulation compared with other numerical model results for the YZ plane at X=0.75. Left 

panel: streamline from the simulation of Zang et al. (1994).  Right panel: the flow field cross section at 

the same location as Zang et al. 

6. Conclusion 

A framework for a microscale meteorological model, ABLE, has been developed. A lot of 

difficult tasks are still ahead of us to enable a complete model. The objective the ABLE model is 

to simulate microscale (defined meters to hundreds of meters in space and minutes in time) 

atmospheric processes in the ABL. We have chosen a set of incompressible set of governing 

equations for the model according to our objectives and intended scope of applications. In this 

framework, we have used a Cartesian coordinate system, a finite volume approach, and 

collocated grids for the numerical discretization of the model system. The numerical integration 

for the scalar and momentum equations is described in detail in the report. The SIMPLE method 

was selected for the semi-implicit coupling of the velocity and pressure fields. Some simple 

boundary conditions are discussed and simple test cases are presented in this report. Some 

planned features for this model system, such as turbulence model for sub-grid scale and the 

treatment of complex boundary, are also described briefly.  

This is the starting point of ABLE model development. Several planned development 

components of the system, such as IB method for treatment of complex boundary, turbulence 

parameterization for the ABL flow, radiation and surface energy exchange, and parallelization of 

the computation, will be carried out in future research and development. 
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List of Symbols, Abbreviations, and Acronyms 

3DWF Three-dimensional Wind Field 

ADI                 alternate-direction implicit   

ABL               atmospheric boundary layer 

ABLE Atmospheric Boundary Layer Environment 

BI-CGSTAB   bi-conjugate gradient stabilized 

CV                  control volume 

CDS                central difference scheme 

FV                   finite volume 

IB                    immersed boundary  

LES                large eddy simulation 

NWP               numerical weather prediction 

RANS             Reynolds averaged Navier-Stocks 

TKE                turbulent kinetic energy  

SOR                successive over relaxation  

SIP                 strongly implicit procedure 

SIMPLE         Semi-Implicit Method for Pressure-Linked Equations 

UDS               upstream difference scheme 
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